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This paper analyses the results of two series of experiments concerned with the
response of a single vertical cylinder in the inertia regime in steep non-breaking waves.
We recorded first the loading on a cylinder when it was held stationary, and secondly,
its response in the same waves when it was pivoted just above the floor of the wave
flume, and supported at the top by springs in the horizontal plane. Spring stiffnesses
were set to achieve natural frequencies (measured in still water) in the range between
3 and 11 times the dominant wave frequency. The experiments were repeated with
cylinders of three different diameters.

Peak loading on stationary cylinders was found to exceed the predictions of a
Morison model (based on kinematics computed from a numerical model of the
measured waves), though improvements were achieved through the inclusion of
slender-body terms. Measured ringing responses are generally in good agreement with
those computed on a quasi-static basis from the measured loading history, but in some
conditions, particularly at low frequency ratios, there is clearly some feedback from the
motion to the excitation. Peak accelerations in the steepest waves are found to be
limited approximately to those that would occur if the maximum loading were applied
as a step change. Particular attention is given to a rapid cycle of loading that occurs
after the crest has passed the cylinder’s axis, and to images of the flow around the
cylinder at the water surface.

1. Introduction

The natural frequencies of offshore structures are generally well above the frequency
corresponding to the peak of the wave spectrum. Conventional frequency domain
approaches are capable of predicting the linear part of the resonant response, and
second-order diffraction programs can in principle predict the sum-frequency excitation
that gives rose to ‘springing’. Evidence in extreme waves of ‘ringing’, a potentially
more dangerous nonlinear motion with burst-like characteristics, was found in model
tests of deep-water oil production platforms for the Heidrun, Draugen and Troll fields
in the Norwegian Sea (Natvig & Teigen 1993). Unlike springing, ringing has a severely
non-Gaussian nature, generates very high stress levels within a burst of only a few
oscillations, and occurs only during the passage of very steep waves. Theoretical and
numerical predictions of ringing are subject to significant uncertainties because an
adequate understanding of the underlying physical processes has not been reached.

Besides the kinematics of steep waves that generate ringing, parameters that are
probably important are the shape of the columns at the water surface, interaction
between neighbouring columns, and the height of the centre of gravity of the structure.
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Most of the previous experimental work on ringing has been carried out with the
purpose of investigating cases of some geometrical complexity, but there is also much
to be said for studying the problem of a single surface-piercing vertical cylinder in steep
waves. This paper describes laboratory experiments on ringing in this very simple
configuration, undertaken with the aim of furthering an understanding of the process,
and, through the provision of well-documented data, of contributing to the validation
of existing methods of analysis.

The problem of predicting ringing responses has stimulated experimental and
theoretical work on the flow around fixed vertical cylinders in steep waves (e.g. Grue,
Bjørshol & Strand 1993; Stansberg et al. 1995; Faltinsen, Newman & Vinje 1995;
Malenica & Molin 1995), in the expectation that once the loading is known, the motion
may be computed by routine techniques. In experimental work by Grue et al. large
waves were generated, as in the present case, by frequency focusing. In Stansberg et al.
individual extreme events were identified by inspection from within a long sequence of
irregular waves. Though in some respects this may be more realistic, frequency
focusing offers much better control over the location and timing of a large wave, and
over its amplitude. Theoretical work by Faltinsen et al. and Malenica & Molin follows
a perturbation approach in which the frequency content of the loading is restricted to
the first few harmonics of the wave frequency. In slender-body theory on the other
hand (Rainey 1995a, b) fully nonlinear terms are derived for the limiting case of bodies
whose waterplane dimensions are small in comparison with all other scales of the
problem.

In the work described below we compare measurements of the cylinder’s response
with that obtained by integration of its equation of motion, using as excitation the
loading measured on it when stiffly supported in the same waves. On the whole
agreement is good, though particularly at low frequency ratios it is clear that the
cylinder’s motion does influence the loading. We first present records of the forces on
a stationary cylinder in the inertia regime in steep focused waves and compare the
results with those of Morison’s equation and slender-body theory, using the kinematics
computed from a numerical model of the measured waves, and from nonlinear regular
waves of similar height and period. Measurements of response at frequency ratios
between 3 and 10 show that an important factor is the time scale of a rapid reversal of
loading under the crest. When this matches the period of the cylinder’s natural
frequency oscillations it leads to a substantial cancellation of the motion after the first
cycle. Conversely when the time interval between positive and negative peak forces
coincides roughly with 50% or 150% of the cylinder’s period, the motion is enhanced.

2. Experimental arrangement

2.1. The wa�e en�ironment

Measurements of loading and response were carried out in a wave flume that is 18 m
long and 750 mm wide, with a mean water depth of 525 mm. The flume is equipped
with an absorbing bottom-hinged waveboard, and at the other end with a wave energy
dissipater comprising a vertical wedge of firm poly-ether foam whose apex points
towards the waveboard at a distance of 15±4 m. Wave reflections, measured by slowly
towing a wave gauge through regular waves, were less than 3% when expressed as a
ratio of wave heights.

For purposes of harmonic analysis it might be thought desirable to study ringing in
regular waves. The difficulty with this however is that at realistic levels of damping the
cylinder’s response would last much longer than the wave period. For example, the
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Wave 745 750 755 760 765 770 775

2A (m) 0±115 0±128 0±143 0±158 0±172 0±186 0±205
k (m−") 3±63 3±60 3±56 3±52 3±48 3±43 3±37
kA 0±208 0±230 0±255 0±278 0±299 0±319 0±345
η
max

(m) 0±073 0±082 0±093 0±104 0±114 0±124 0±138
(¥η}¥t)

max
(m s−") 0±37 0±43 0±51 0±61 0±73 0±92 1±26

Time of (¥η}¥t)
max

(s) ®0±17 ®0±15 ®0±14 ®0±10 ®0±10 ®0±07 ®0±05
(¥η}¥t)

min
(m}s) ®0±37 ®0±42 ®0±47 ®0±51 ®0±54 ®0±56 ®0±55

Time of (¥η}¥t)
min

(s) 0±18 0±16 0±12 0±10 0±10 0±10 0±11

T 1. Characteristics of waves at the focus point. In all cases the still water depth was
0±525 m and the period between troughs was close to 1±05 s.

present experiments were carried out in a tank where regular waves would have had
periods of around 1 s. In the measurements of response shown below, the cylinder’s
amplitude of motion 1 s after the initial excitation was typically well over 50% of its
maximum, and oscillations were still noticeable 10 s later. In regular waves therefore
the cylinder’s response to each burst of excitation would be very much influenced by
its existing decaying oscillations. While a periodic motion might develop, this would
probably be more difficult to understand than the response to an isolated event, and
it would not be representative of conditions offshore where the large waves that are
likely to generate ringing appear singly rather than as members of a regular train
(Atkins, Lyons & Rainey 1997).

Some measurements of the loading on stiffly supported cylinders were, however,
attempted in regular waves. But the useful range of conditions was restricted by the fact
that when the incident waves were greater than about 65% of their limiting height,
reflections that propagated from the cylinder in the opposite direction generated some
local breaking of the surface. Force measurements were made with the 100 mm
diameter cylinder in waves of heights below this limit and the fundamental frequency
component was found in each case to be in excellent agreement with a Morison
equation prediction based on stream-function wave theory (see below). But the waves
were not steep enough for the higher frequency components of the loading to be of a
sufficient magnitude to warrant further study.

We carried out all other experiments in single large waves, generated as described
below and in the Appendix. The waves were focused at a point 12±5 m from the
waveboard by appropriate modulation, in frequency and amplitude, of the waveboard’s
control signal. This consisted of a summation of 34 continuous sinusoidal components
whose frequencies were equally spaced between 0±511 and 1±244 Hz. For each wave
condition the control signal was generated by an iterative technique, based on the
requirement that as far as possible all wave components should come to the same phase
(corresponding to maximum horizontal particle velocity) at the focus point. Further
details are given in an Appendix, and in Chaplin (1996). Measurements around the
focus point showed that components of the focused wave were more cohesive than
indicated by the linear dispersion relationship (see figure 22 in the Appendix), and that
the maximum crest elevation (and the point where wave breaking occurred if the waves
were of sufficient amplitude) was about 1 m further along the flume away from the
waveboard.

Heights, steepnesses, and other features of the seven focused waves used in the
present experiments are set out in table 1, where the wave height 2A is the difference
between the elevations of the crest and the preceding trough. Records of water surface
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F 1. Water surface elevation records of the seven focused waves used in the experiments.

elevations η(t) at the focus point, obtained in the absence of the cylinder, are shown in
figure 1, where, as elsewhere in this paper, time t is set to zero at the instant when the
wave crest passed the cylinder’s axis. All features of the experiments displayed a very
high degree of repeatability. Efficient absorption of waves at both ends of the flume
ensured that the motion of the water decayed very rapidly indeed after each test.

Table 1 also shows a representative wavenumber k for each case, determined from
the height 2A, and a wave period of 1±05 s, being close to the observed interval between
the troughs before and after the focused wave in all cases. In view of the observed
cohesiveness of the wave crest just described, the wavenumber was obtained from a
stream-function solution for a regular wave, of the same height and period, in the same
still water depth.

The 16th-order steam-function code used for this purpose and subsequently for
some of the computations of particle velocities follows the approach described by
Chaplin (1980), and was checked against Cokelet’s (1977) tabulated data for conditions
close to those of the experiments, where kh was about 2±0 (h being the still water depth).
Crest elevations and particle velocities at the crest were found to be in agreement to
within 0±2%, for wave steepnesses up to 3% of limiting height.

For reference purposes table 1 gives peak rates of change of the water surface
elevation ¥η}¥t measured in the experiments at the cylinder’s location. In the smallest
waves, those before and after the crest are of almost equal magnitudes, and the times
at which they occur are almost symmetrically disposed about t¯ 0. And in accordance
with the behaviour of regular waves of large amplitude, where the points of maximum
surface slope converge towards the crest (and in limiting conditions coincide at the 120°
corner), these times approach t¯ 0 as the wave amplitude is increased. But the largest
waves were asymmetrical, having a rise time on the front face considerably shorter than
the fall time on the rear face; see figure 1.

All of the force and response measurements were made in the 750 mm wide wave
flume described above. However, flow visualizations were carried out in a second series
of tests in a wave flume that is 12 m long, 400 mm wide, and has a still water depth of
700 mm. This is equipped with a waveboard and wave absorber similar to those in the
750 mm wide flume, and control signals were computed (over the same range of
frequencies as before) to achieve focused waves 8±5 m from the waveboard (rather than
the 12±5 m in the original flume). The 400 mm wide flume provided better access for
visualization of the free surface, and images were obtained by direct capture to RAM
of the output of a CCD camera at a rate of 50 frames per second. The free surface was
lit by floodlights directed upwards through the glass floor of the flume. To ensure
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F 2. Layout of the experimental arrangments.

accurate time registration, acquisition of the images was triggered from the command
signal played out to the waveboard.

2.2. The test cylinders

Measurements of loading and response were made with cylinders of outside diameters
100 mm and 127 mm, constructed from Perspex pipe of 3 mm wall thickness. The
cylinders were empty, so that their total inertia (dominated by the effects of added
mass) should be representative of that of a steel or concrete tube. A third similarly
constructed cylinder of 70 mm diameter was also used in the tests, but not all of the
results from this cylinder are reported here since they were quite strongly affected by
drag. The arrangements for mounting the cylinders at the focus point in the 750 mm
wide flume are shown in figure 2; each cylinder was pivoted at the bottom (100 mm
above the flume floor) and supported at the top on springs in the horizontal plane, with
a lever mechanism that provided for an easy and continuous adjustment of stiffness. It
was found that ringing did not induce significant lateral response, and so the support
system was designed to allow motion only in the longitudinal direction. Experiments
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F 3. Experimental and other conditions on the (kA,kc)-plane. Present experiments (E) ; Grue
et al. (1993) () ; Stansberg et al. (1995) (^). Wavenumbers for the experimental data were obtained
from nonlinear regular wave theory using the measured trough-to-trough period. Points marked ¬
represent the conditions corresponding to members of 10 m, 15 m and 20 m diameter in the largest
wave observed at the Tern Platform (Atkins et al. 1997). Limiting wave amplitudes are calculated
from Cokelet (1977) ; that for the experimental conditions refers to the actual mean water depth and
the measured trough-to-trough period.

were carried out with stiffnesses set to achieve natural frequencies (measured in still
water) within the range 2±87 to 11±27 Hz. The structural damping factor of the
cylinders (measured in free vibration tests in air) was about 0±5%.

The cylinders were mounted at top and bottom on load cells, while the 100 mm
cylinder was also fitted with a ring of 12 flush-mounted pressure transducers at an
elevation 10 mm below still water level. The motion at the top of each cylinder was
recorded both with an accelerometer, and with a non-intrusive optical displacement
meter. All channels of data (totalling five for the 70 mm and 127 mm cylinders, and 17
for the 100 mm cylinder) were sampled at 182±04 Hz.

All of the flow visualization experiments were carried out with the 100 mm diameter
cylinder in the 400 mm wide flume (at the same blockage ratio as that of Grue et al.
1993). We first investigated the effects of channel blockage in the 750 mm flume, by
installing sidewalls that reduced its width to 400 mm. Force records obtained in similar
waves with and without sidewalls were almost indistinguishable, except that when the
flume width was reduced, there was a slight increase in the peak force. In the largest
wave (775) this amounted to 8%; in wave 760, it was no more than 2±5%. These results
support the view that none of the present measurements are significantly contaminated
by blockage effects. Quite different limitations apply in regular waves. For example,
theoretical and experimental data given by Zhao et al. (1988) for the case of a sphere
of 1 m diameter in a tank 10±5 m wide and 10 m deep indicate that tank wall effects are
very much more important than those found here. In the present case the motion is
highly transient, and it seems likely that there is not sufficient time for substantial
transverse reflections to develop within the period of interest.

Forces at the top of the cylinder were measured also in the visualization tests, in
order to ensure that images were captured at the times of specific events in the loading
history.
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2.3. Theoretical considerations

The wavenumbers of table 1, and the cylinder diameters just described, give kc values
(where c is the cylinder radius) of around 0±12, 0±18 and 0±22. Also, the wave
amplitudes A put the nominal surface Keulegan–Carpenter number KC (defined as
πA}c) in the range 3–10. The three cylinders are therefore in the ‘ inertia ’, rather than
the ‘drag’ or ‘diffraction’, regime. To compare this experiment with others, it is
convenient to consider a (kA,kc) plane, as in figure 3, on which we can locate the
present experimental conditions, and those of Grue et al. (1993) and Stansberg et al.
(1995). This plane can also be used to illustrate the various theoretical considerations
which bear on the experiment, as we now describe.

First, the vertical lines show the limits of various wave theories. On the left, we show
the lower limit kA identified by Lake & Yuen (1978) as the average wave steepness of
a group in which significant nonlinear effects on phase speeds are to be expected. This
is to emphasize the fact that the focused waves in the experiments are all likely to
exhibit the strongly nonlinear dispersion mentioned earlier (see figure 22 in the
Appendix). Then, we show the limiting steepness of the regular waves which we have
accordingly sometimes used to model them, as described in the discussion of table 1.
The steepest waves used in the experiments evidently had about 85% of the maximum
height of regular waves of the same period and water depth. For completeness, we also
show the maximum steepness in deep water, and, at kA¯ 0±40, the steepness near
which the Stokes expansion for undisturbed waves diverges (Schwartz 1974). Finally,
to emphasize the relevance of the experiment to full-scale structures, we show a vertical
line corresponding to the largest wave recorded during the 1990–92 measurements at
the Tern platform in the North Sea (Atkins et al. 1997 – nonlinear regular wave theory
is used to compute the steepness, which is here kA¯ 0±314, based on the measured
height of 26±92 m and upcrossing period of 12±50 s). We also show the points on this
line which correspond to this wave combined with structural members of diameters
10 m, 15 m and 20 m.

Next, diagonal lines correspond to different values of the nominal surface
Keulegan–Carpenter number πA}c. We show the line KC¯ 10; all points below this
line have higher KC, and are thus increasingly dominated by drag forces. It may be seen
that the smallest of the three cylinders is close to this line in the largest waves, and thus
that drag forces were beginning to be important there, as noted earlier. We also show
the line KC¯π (i.e. wave height¯ cylinder diameter). According to Rainey (1995b)
the Stokes expansion (in which the boundary conditions of ascending order are applied
at the still-water position) can be expected to diverge for all points below this line,
because of the presence of the cylinder. This is an important theoretical point. Rainey’s
argument is based on the solution of a much simpler problem in which the water
surface is constrained by a ‘wavy lid’, so as to keep the shape it would have were the
cylinder absent. Applying the Stokes expansion is here analogous to using it to solve
the simple two-dimensional problem of flow around a fully immersed cylinder
oscillating in still water by applying successive boundary conditions at the mean
cylinder position, rather than at its instantaneous displaced position. This scheme can
easily be shown to diverge once the peak-to-peak cylinder excursions exceed the
cylinder diameter (Rainey 1995b).

Finally, horizontal lines in figure 3 correspond to particular features of Stokes
expansion solutions. The simplest would be the threshold of Stokes first-order
diffraction effects, which, at kcE 0±5, is a line above the top of the figure, placing the
whole experiment in the ‘ inertia regime’ as already noted. An exactly analogous line
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is the threshold of Stokes third-order diffraction effects, i.e. the value of kc above which
there are significant errors in the small-kc asymptotic form (namely a third-harmonic
component of amplitude 2(ρgπc#}k) (kA)$) of the Stokes third-order diffraction force.
This has recently been established by Malenica & Molin (1995) as kc¯ 0±05. For points
above this line, diffraction is important in this sense. Evidently it would be important
for all the present experimental cases had the divergence of Stokes’s expansion not
made the point irrelevant. The original claims for this asymptotic form were based on
its derivation by an alternative perturbation scheme (Faltinsen, Newman & Vinje
1995), that was claimed to be valid for the region of the present experiments. The free-
surface observations below, however, which feature local breaking of the water surface
near the cylinder, show that we do not have smooth flow conditions – therefore all
perturbation schemes (and not merely the Stokes expansion) must break down.

As far as these violent motions of the free surface are concerned, there appears to
be a fruitful analogy with a cylinder moving from rest in still water, at constant velocity
(Rainey 1997). Here there is a step change in the cylinder’s acceleration relative to the
water, just as there is when a sharp (120°) crested wave passes a fixed cylinder. And a
small-time expansion shows, very simply, that there should again be violent motions
of the free surface.

3. Experimental results

3.1. Peak loading on a stiffly supported cylinder – comparison with computations

To measure the loading on a stiffly supported cylinder, the top springs shown in figure
2 were replaced by stiff links, producing natural frequencies of about 28 Hz for all three
cylinders and making the dynamic ‘ringing’ response very small. The moments M(t)
about the tank floor obtained in this way, on each of the three cylinders, in each of the
seven focused waves, are plotted in figure 4. These unfiltered results have maxima and
minima in each case near to points identified as M

"
, M

#
, M

$
and M

%
, which represent

the corresponding extreme values after numerical filtering had removed the effects of
dynamic response. In each case the peak moment M

"
occurred at about the same time

as the maximum in ¥η}¥t.
For the purpose of obtaining numerical predictions of the loading, it was necessary

to model the undisturbed flow beneath the waves. One approach to this problem would
be to match the water surface elevation records to a time-stepping code for time-
dependent waves (e.g. New, McIver & Peregrine 1985; Dommermuth et al. 1988), but
this would be a major undertaking. Instead we used the simpler crest-fitting technique
described by Baldock & Swan (1994) in which a section of a single measured water
surface elevation record (in our case 3±3 s centred at the instant when the crest passed
the cylinder’s position) is assumed to be periodic in both time and space. The flow is
represented by a velocity potential composed of a number of frequency components (in
our case, the first 20 multiples of the fundamental 2π}3±3 s−"), at each of which there
are as many wavenumbers (the first 20 multiples of 2π}7±25 m−"). The 400 complex
coefficients of the velocity potential series are computed by a least-squares method that
aims to minimize differences between the measured and predicted water surface
elevation record, and errors in the free-surface boundary conditions over the entire
domain of the simulation. The technique adopted here followed closely that described
by Baldock & Swan, except that the dynamic boundary condition was satisfied
implicitly at each iteration (as in Chaplin 1996).

This method was tested in conditions similar to those of the present experiments by
Baldock, Swan & Taylor (1995), who showed that it gave particle velocities in close
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F 4. Moments recorded on the three cylinders when stiffly supported in each of the focused
waves of table 1. These records are unfiltered, and the moment axes are scaled in each case in
proportion to the square of the cylinder’s diameter.

agreement with measurements made by laser Doppler anemometry. Also, Chaplin
(1996) found that it correctly modelled the behaviour of the crest for some distance on
either side of the focus point. These earlier validations provided confidence in the
method, and we used it to compute the kinematics of waves up to case 765. The
solutions for cases 770 and 775 failed to converge. It seems reasonable to link this with
the fact that in the laboratory, these waves (and not the smaller ones) broke further
along the tank.

In figure 5 the numerical solution for case 765 is plotted in the form of (a) time
histories of water surface elevations at seven points around the focus, and (b) water
surface profiles at seven different times. The simulation matches the measurements at
the focus x¯ 0 m, and it is seen that (as observed in the laboratory and mentioned
above) the computed elevation of the crest achieves a maximum after passing this
point. In the simulations, the dynamic boundary condition at the free surface was
satisfied exactly ; the root-mean-square error in the kinematic boundary condition,
expressed as a proportion of the root-mean-square surface particle velocity, was 6±4%
for case 745, rising to 7±3% for case 765.

A second method for computing wave kinematics was to use a regular-wave model
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F 5. Computed water surface elevations for case 765, (a) as functions of time at seven different
locations (the measurements at the focus point x¯ 0 m are shown as points), and (b) as functions of
x at seven different times.

on the basis that this represents a simply defined and widely accessible standard
solution, capturing many of the nonlinear features of the focused waves, and in
particular their cohesiveness, as discussed earlier. The use of regular-wave models also,
of course, follows conventional design practice for offshore structures. For these
reasons some comparisons are made below between force measurements and
predictions based on stream function solutions for regular waves described above.

For case 765, figure 6 shows the results of various computations of the loading on
the 100 mm cylinder, based on each of these methods, as well as the corresponding
measurements. For the two larger cylinders, figure 7 shows maximum measured and
computed positive moments in the dimensionless form M!

"
¯M

"
k}(ρgπc#h).

The first load computations are based on the Morison inertia term alone, with an
inertia coefficient of two. This calculation used the total acceleration (including the
convective contribution) in the incident wave, and integrated the inertia force up to the
instantaneous undisturbed water surface. The Morison drag (applied in the same way
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F 6. Moment records for the 100 mm cylinder in case 765 compared with predictions based
on (a) unsteady and (b) regular wave kinematics. Force components are identified in figure 7.

and based on a drag coefficient of 1±0) is also shown in figures 6 and 7 after the addition
of further potential flow forces.

These cover the refinements to the Morison inertia term described in Rainey (1995b),
which bring its accuracy, when applied in this way, up to second order in the Stokes
expansion, for the case of a slender cylinder (i.e. small kc). For the present simple fixed
geometry these are first, the ‘axial divergence force’, which is integrated like the
Morison inertia term:

&
η

−h

ρπc#(¥�
z
}¥z) �

x
dz, (1)

where �
x
and �

z
are the horizontal and vertical particle velocity components, the former

measured in the same sense as the force, and z measured upwards from the still water
level. Secondly, there is the ‘surface intersection force’, which is applied as a point
load:

®(ρπc#}2) �#
x
¥η}¥x, (2)

at the instantaneous intersection point of the cylinder axis with the incident wave
surface.
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F 7. Peak normalized moments as a function of wave steepness. Measurements from the
100 mm and 127 mm cylinders are compared with Morison and slender-body forces computed from
(a) unsteady and (b) regular wave kinematics.

There remains a third-order error when compared with the Stokes asymptotic form
2(ρgπc#}k) (kA)$ mentioned above. This can be removed by an additional ‘surface
distortion force’ :

(7ρπc#}2g) �#
x
¥�

x
}¥t, (3)

which is again applied as a point load at the surface intersection. However, in contrast
to the ‘surface intersection force’ (2), whose derivation rests on elementary
considerations of energy conservation (Rainey 1995b, figure 1), the derivation of (3)
(described in Rainey 1995a) assumes the smooth-flow conditions of small surface
distortion compared with the cylinder diameter (i.e. the Stokes assumption of small
kA). This is plainly inappropriate in the present experiments, and the comparison with
the Stokes expansion is anyway irrelevant, because it has diverged, as discussed in the
previous section.

Figures 6(a) and 7(a) suggest that good agreement with the positive measured
moment is obtained when just the first two slender-body terms (1) and (2) are included.
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F 8. Definition sketch for F!
c
, a measure of the magnitude of the secondary loading cycle.

The force record shown is for the 100 mm cylinder in case 760.

This supports the view that the ‘surface distortion force’ (3) should be dispensed with,
since it is difficult to justify theoretically in these conditions, as explained above.
Equally, the computed drag appears inappropriate, probably because of the highly
unsteady nature of the flow.

From figures 6(b) and 7(b) it is seen that the regular wave model is in rather poor
agreement with the measurements, and the sum of Morison, axial divergence and
surface intersection forces results in a significant under-prediction of the peak loading.
Agreement is better when the surface distortion and drag forces are included, but since
this is only fortuitous, these components are omitted. Clearly the kinematics of the
focused wave are more severe than those of a regular wave of equivalent height and
period.

3.2. Secondary loading cycle

It is worth considering in more detail the loading that was observed after the crest had
passed the cylinder’s axis, when there were large discrepancies between the
measurements and predictions, as shown in figure 6. In steep waves the moment fell to
the minimum identified as M

#
in figure 4, followed by a rise to M

$
and a fall to another

minimum at M
%
. In case 745 the minimum in ¥η}¥t coincided with M

%
; in case 775 it

coincided with M
$
. The moment M

#
became more negative as the wave steepness was

increased, but in dimensionless terms M
%

was remarkably constant for all waves and
both the larger cylinders, with M!

%
¯®0±341³6%. The ‘secondary loading cycle ’ M

#
,

M
$
, M

%
is shown below to have a significant effect on the response of a cylinder

mounted on more flexible supports. This cycle was observed also by Grue et al. (1993)
and can be seen in the force records of Stansberg et al. (1995). Grue et al. noted that
it lasted for about 15% of the wave period (defined as the local zero up-crossing period
at the position of the cylinder’s axis), had a magnitude of up to 11% of the peak-to-
peak range of the total force, first occurred when the Froude number

Fr¯ η
max

ω}(2gc)"/# (4)

exceeded about 0±35, and became pronounced when Fr" 0±4. They attributed it to a
suction force acting at about one cylinder radius below the still-water level. Our
measurements of the duration of the secondary loading cycle (about 0±15 s for all three
cylinder diameters) and its magnitude (up to between 8% of the total force for the
smallest cylinder, and 12% for the largest) are in agreement with those of Grue et al.
However, in the present case, it could not be considered to be ‘pronounced’ until the
Froude number exceeded about 0±6, and then not in all cases. Nor was its appearance
dependent solely on the Froude number.

A measure of the magnitude of the secondary loading cycle F!
c

is defined in figure 8
in terms of the total horizontal force on the cylinder F(t) normalized with respect to
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F 9. The normalized magnitude of the secondary loading cycle, plotted (a) against the Froude
number (equation (4)), (b) against wave steepness, and (c) after division by kc, against wave steepness.

ρgπc#}k. A slightly different definition was adopted by Grue et al., whose data are
however re-analysed here in the same way as our own. Figure 9(a) shows that values
of F!

c
from the four sets of data are not well correlated when plotted against the Froude

number Fr defined above. Froude numbers from the data of Grue et al. have also been
re-calculated for present purposes using a frequency ω in equation (4) corresponding
to the trough-to-trough period, and not (as in Grue et al.) the central frequency of the
wave packet. But figure 9(a), and the similarity of the moment records from all three
cylinders (figure 4), make it clear that the amplitude of the secondary loading cycle is
not solely dependent on the Froude number, however its velocity scale is defined. With
respect to the initial growth of the process, much better agreement appears when the
same data are plotted against kA, as in figure 9(b), suggesting that in this connection
the Froude number is less important than the wave steepness.

In the largest waves, the values of F!
c

derived from the present measurements
decrease with increasing wave steepness but are roughly proportional to the cylinder’s
diameter, as is shown in figure 9(c) where F!

c
}kc is plotted against kA. This behaviour

suggests a relationship between c$ and the magnitude of the secondary loading cycle in
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the largest waves, possibly through the appearance of a wave whose length is related
to the cylinder’s diameter.

The same cycle of loading may be seen in the pressure measurements. The sectional
force record integrated from pressure distributions 10 mm below still-water level for
the 100 mm cylinder in wave 765, plotted in figure 10, shows a pronounced oscillation
over a range equal to one-quarter of the peak force per unit length. Distributions of
pressure around the cylinder at four instants (identified in figure 10) corresponding to
the crest, and to the extremes M

#
, M

$
and M

%
of the oscillation for wave 765 are shown

in figure 11. The increase in loading M
#
to M

$
is clearly associated with the fact that

over this interval the pressure falls more rapidly on the rear face of the cylinder than
on the front, while the reverse is true between M

$
and M

%
.

3.3. Obser�ations of the free surface

At the time corresponding to M
"
, coinciding almost with the maximum horizontal fluid

acceleration in the wave (i.e. the maximum wave slope), the water surface is raised on
the up-wave side of the cylinder and lowered on the down-wave side. As expected this
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F 12. Flow around the 100 mm cylinder in case 765. Horizontal lines at the edge of each frame
are at still water level. The times are (a) when the crest is alongside the cylinder, (b) at M

#
, (c) at M

$
and (d ) at M

%
.

follows the Stokes first-order water pressure distribution (i.e. that responsible for the
Morison inertia force, which is at a maximum at this stage). Observations of the free
surface around the cylinder at four later times are reproduced as negative images (for
greater clarity) in figure 12. They reveal the complexity of the motion at the surface and
some of the processes that clearly influence the loading.

Run-up on the front of the cylinder increases rapidly, with a distinctive thickening
at its leading edge, and when the crest is alongside the cylinder (figure 12a), depressions
at the rear reach down more than one radius below the surrounding water surface. At
this stage the incident velocity is at a maximum and the incident acceleration is zero,
so the expected water pressures are those that arise through the velocity-squared term
of Bernoulli’s equation, increasing (as seen in figure 11) to maxima on the upstream
and downstream sides of the cylinder, and falling to a minimum abreast of it. Only
some of these features can be identified in figure 12(a).

At the time corresponding to M
#
(figure 12b), there is an upwelling at the centre of

the rear face, and the run-up at the front has started to fall back. The dominant feature
at the time of M

$
(figure 12c) is a mound of water at the rear of the cylinder, and

reduced depressions at the sides that start to propagate in the direction opposite to that
of wave advance. By the time of M

%
(figure 12d ), the upwelling at the rear has started

to collapse, but the advancing depressions at the sides have coalesced at the front face
of the cylinder where a pronounced dip appears.

The presence of strong vertical accelerations makes it difficult to interpret these
observations in terms of the pressure recordings, though it seems likely that the
lowering of the water surface at the front of the cylinder at the end of the cycle is linked
to the reduction in moment at M

%
. In the later stages of the process the water surface

broke at the rear of the cylinder, as can be seen in figure 12(c, d ). However, though
some splashing occurred in all cases, large-scale aeration of the flow was not observed.
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F 13. Displacement and acceleration records for the 100 mm cylinder in case 775.
Continuous lines are measurements, broken lines are computed with the quasi-static model.

3.4. Ringing response

In ringing experiments, each cylinder was supported in turn in the 750 mm wide flume
as described previously on a system of springs that allowed easy adjustment of stiffness.
Natural frequencies ω

c
mentioned below are those observed in free oscillations in still

water. Some typical ringing responses are shown in figures 13 and 14 in the form of
horizontal displacements r and accelerations r$ at still water level. These are for the
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Continuous lines are measurements, broken lines are computed with the quasi-static model.

100 mm cylinder in cases 775 and 745 respectively, at frequency settings ω
c
}2π¯ 3±82,

6±82 and 9±15 Hz (or, in relation to the trough-to-trough period of the waves, at
frequency ratios of 4±0, 7±2 and 9±6). In terms of kA the wave in case 775 is about 10%
larger than the largest wave observed at the Tern platform over two years (figure 3;
Atkins et al. 1997). It is therefore very pertinent to design problems for extreme waves
in the North Sea. The wave in case 745 is about 40% smaller.
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F 15. The magnitude of the second negative acceleration peak at the still-water level,

recorded on the 100 mm diameter cylinder in the four largest waves.

In the low-frequency case, the response records (figures 13 and 14a, b) follow the
behaviour previously observed for example by Jefferys & Rainey (1994), in that
the maximum acceleration and the maximum in the high-frequency part of the
displacement record occur after the first few half-cycles of the motion. This is the case
also at the highest frequency setting (e, f ). But the response at the middle frequency
(c, d ) is quite different, since here, particularly in case 775, the acceleration is suddenly
reduced by about one-half immediately after the first cycle. This type of motion occurs
when the cylinder’s natural period is close to the time interval between M

"
and M

#
, or

in other words when the second peak in the loading opposes the motion of the cylinder
that is generated by the first. In figure 15, the magnitude of the second negative
acceleration peak is plotted against the cylinder’s still-water natural frequency for the
100 mm cylinder in each of the four largest waves. These peak accelerations reach
minimum values at still-water natural frequencies between 5±8 Hz (case 760) and
7±2 Hz (775). Owing to the presence of additional added mass during the passage of the
crest (see below), the actual initial oscillation frequencies were lower than those
measured in still water, and in these cases were close to 4±5 and 6±5 Hz respectively. The
corresponding periods (0±22 and 0±16 s) match the intervals between M

"
and M

#
in the

same waves, namely 0±23 and 0±16 s.
On this basis it seems reasonable to expect that large amplitudes will occur when the

time interval between M
"

and M
#

is close to 50% or 150% of the period of the
cylinder’s natural frequency oscillations. These conditions would occur in case 760 at
frequencies of 2±2 and 6±5 Hz, and in case 775 at 3±1 and 9±4 Hz. Such trends can clearly
be detected in figure 15.

In studying the cylinder’s ringing response we introduce a reference displacement
and a reference acceleration (both at still water water level) based on a model of the
cylinder as an undamped elastic system of rotational stiffness K, and constant moment
of inertia K}ω#

c
. The reference displacement R is that associated with a statically

applied moment of magnitude M
"
,

R¯M
"
l}K, (5)

where l is the depth of the pivot below still-water level. A suitable reference acceleration
is Rω#

c
, which is the maximum that would occur in the undamped system if the moment

M
"
were applied as a step change. Measured peak displacements r

max
and accelerations

rX
max

are related to these scales through factors α and β :

r
max

¯αR, rX
max

¯βRω#
c
. (6)
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F 16. Normalized peak displacements (a), and accelerations (b), for the 100 mm cylinder at
various frequency ratios as functions of wave steepness.

In each test r
max

was identified as the magnitude of the first excursion of the cylinder
in the direction of wave. Peak accelerations rX

max
represent half the difference between

maximum and minimum measured values.
The factor α is simply the dynamic magnification of the system, referred to the peak

loading M
"
. And if β were equal to unity, this would imply that the cylinder’s

maximum acceleration was equal to that which would result (in the absence of
damping) if the moment M

"
were applied as a step change. For the 100 mm cylinder,

α and β are shown for various frequency ratios ω
c
}ω as functions of the wave steepness

kA in figure 16. Except in the two steepest waves, α is between 1±0 and 1±1, implying
that the peak displacement was not much affected by dynamic magnification. The
largest response occurred at the lowest frequency settings in the steepest waves, and
here α falls below 1±0, presumably because of increased hydrodynamic damping.
Acceleration factors (figure 16b) increase roughly with the cube of the wave steepness
initially, but they seem to reach limiting values not much greater than 1±0 in the steepest
waves.

Three distinct influences on α and β can be identified: the frequency content of the
loading, hydrodynamic damping and other interactions between the moving cylinder
and the fluid, and the changing immersion of the upper part of the cylinder. The last
of these may have an important effect on the motion, because it will lead to rapid
changes in added mass as the wave crest passes the cylinder. And in our experiments,
changes in added mass were rather important because the motion of the cylinder was
always in the form of rotation about the pivot at its base. When the largest wave was
alongside the 100 mm cylinder, the added mass associated with that part of the cylinder
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frequency to the wave frequency. Closed and open symbols refer to the 100 mm and 127 mm cylinders
respectively.

between the still-water level and the undisturbed crest elevation would have been
responsible for about 25% of its total moment of inertia. For the 127 mm cylinder the
proportion was about 30%. These ratios are unrepresentatively large for offshore
structures, but their effect on the response can be predicted as described below.

3.5. Comparisons with a quasi-static numerical model

To distinguish between structural and hydrodynamic influences on the response, α and
β may be considered in two parts :

α¯α
s
α
h
, β¯β

s
β
h
, (7)

where α
s
and β

s
are defined in the same way as α and β in equation (6), but in terms

of peak displacements r
max

and accelerations rX
max

obtained from a time-stepping
numerical model rather than from measurements. The model used for this purpose
represented the cylinder as an idealized single-degree-of-freedom elastic system, subject
to the loading measured in the stiffly supported case. It followed the Newmark
integration scheme with linearly varying accelerations over time increments identical to
those of the data collection. The motion of the cylinder was computed on the
assumptions that the added mass extended up to the undisturbed instantaneous water
surface, and that the added mass coefficient and the hydrodynamic damping factor
were equal to those observed in free oscillations in still water.
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The factors α
h

and β
h
, defined as

α
h
¯

measured peak displacement

quasi-static peak displacement
, β

h
¯

measured peak acceleration

quasi-static peak acceleration
, (8)

represent the effects of feedback from the cylinder’s motion to the loading.
The numerical model used only the measured loads, and therefore neglected all

effects of cylinder motion, such as those arising through the Morison drag term and the
slender-body corrections to the Morison formulation, represented in figures 6 and 7.
Also, additional slender-body terms come into play once the cylinder begins to move.
These include the ‘negative centrifugal force ’, the transverse buoyancy, and the
position dependence of all the wave loading terms (Rainey 1995b).

For each case in figures 13 and 14, the responses computed with the quasi-static
model are shown as broken lines. There is generally a good match with measured
displacement and acceleration records, suggesting at least that the loading is not
profoundly modified by the cylinder’s response (a conclusion reached also by Jefferys
& Rainey 1994), and that responses for a cylinder of different dynamic properties could
equally well be predicted from the same loading record. But, as in Jefferys & Rainey’s
case, there are some important differences between measured and simulated responses,
suggesting in other words that α

h
and β

h
may not always be close to unity.
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F 19. Moduli of Fourier transforms of (a) water surface elevation records, (b) the moment
measured on the 100 mm cylinder in the stiffly supported condition, and (c) the response of the
100 mm cylinder at the three frequency settings in case 775 whose time series are plotted in figure 13.

Quasi-static dynamic magnification factors α
s
are plotted in figure 17(a) as functions

of the frequency ratio ω
c
}ω for four wave amplitudes. Dynamic effects in the

displacement response are important where α
s
departs significantly from unity, i.e. at

the lowest frequency ratios in all waves, and at all frequency ratios in the largest waves,
where α

s
approached 1±2. Other hydrodynamic factors clearly also influence the peak

displacements in some cases, as shown in figure 17(b) by the departure of α
h

from
unity. For most tests α

h
was between 0±9 and 1±1, but it was less than 0±9 for low

frequency ratios in large waves. These are the cases where the cylinder’s velocity was
highest, and therefore where the relative motion terms above, absent in the
computations, would be most important.
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F 20. The effect of the secondary loading cycle on the response. Computed responses are

shown in (b) for the moments in (a) at a frequency ratio of 7±2. Case 775.

The acceleration factor β
s
(figure 18a) revealed much stronger frequency-dependent

behaviour. In the largest waves, at almost the lowest frequency ratios, β
s

reached
maximum values slightly above unity, indicating that computed accelerations were
greater than those which would occur if the maximum moment M

"
were applied as a

step change to the idealized system with no damping. Measured peak accelerations
were still larger by an average of about 10%, as shown in figure 18(b) where the ratio
between measured and predicted peak accelerations β

h
is plotted for two cases. The

results are scattered between 0±9 and 1±3 without obvious trends.
In the middle range of wave heights there is a minimum in the peak acceleration

factor β
s
where the period of the cylinder’s oscillations was close to the time interval

from M
"

to M
#
, as discussed above. This is apparent also in the frequency domain.

Since the water surface elevation record and the loading and response of the cylinder
are all transients, it is appropriate to examine their spectral content by computing their
true, rather than their finite, Fourier transforms, and this was achieved by numerical
integration over the interval ®1! t! 5 s, after the signals had been tapered smoothly
to zero over 0±5 s at each end. Moduli of Fourier transforms computed in this way are
plotted in figure 19 against the ratio of frequency ωW to wave frequency ω. In the range
6!ωW }ω! 7, the Fourier transforms of moment on the stiffly supported cylinder
(figure 19b) have minima that are not present in the wave itself (figure 19a), but are
evidently related to those in β

s
(figure 18a) and in peak accelerations (figure 15) in

the same frequency range. Figure 19(c) shows a correspondingly weaker response at
ω
c
}ω¯ 7±2 than at ω

c
}ω¯ 4±0 or 9±6.

The sensitivity of the cylinder’s response to the secondary loading cycle is
demonstrated in figure 20, where two computed acceleration records are compared for
the 100 mm cylinder at a frequency ratio of 7±2 in case 775. First, the measured moment
(whose Fourier transform is shown in figure 19b), and the response computed from it
(in close agreement with the measured response shown in figure 13d ), are shown as
continuous lines. Since this case is in the intermediate frequency range, there is a
substantial reduction of the motion after the first cycle, as noted above. Secondly,
broken lines show the effect of an artificial modification made to smooth out the
secondary loading cycle from the moment record. The resulting Fourier transform is
shown as a series of points in figure 19(b), differing from the original by the absence
of a minimum at frequency ratios between 6 and 7. Correspondingly, the response
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computed from the modified moment record (shown as a broken line in figure 20b)
does not undergo a rapid attenuation, and large-amplitude oscillations are sustained.

These differences (which were found over a wide range of frequency ratios) are the
consequences of rather arbitrary changes to the loading record, but they illustrate the
problem of obtaining accurate predictions of response from models that are unable to
capture the complex fluid motion around the cylinder at the free surface.

4. Conclusions

Measurements of ringing were obtained in laboratory experiments on single bottom-
pivoted vertical cylinders in focused waves, over frequency ratios (cylinder natural
frequency to wave frequency) between 3 and 11. Within an intermediate range of
frequencies the motion exhibited a sudden reduction after the first cycle, caused by a
coincidence of the cylinder’s natural period with the time interval between positive and
negative peaks in the loading. At other natural frequencies the same reversal in the
loading led to an enhancement of the response.

Peak forces and moments measured on the same cylinders when stiffly supported in
the same waves exceeded Morison predictions (based on the kinematics of an unsteady
model of the measured waves) by a margin that increased rapidly with wave steepness.
Much better agreement was achieved when slender-body corrections to Morison’s
equation, which improve the accuracy of its inertia term in modelling potential flow
loads, were included. Similar force computations based on regular wave kinematics
(using the measured wave height and period) led to significant under-prediction of the
peak loading.

The acceleration response of flexibly mounted cylinders at low frequency ratios was
limited approximately to that which would occur if the peak static loading were
applied, in the absence of damping, as a step change. Maximum accelerations were
observed at frequency ratios of about 3±5. Accelerations at higher frequencies were not
dissimilar to those that would arise from a resonant response at the level of damping
observed in still water.

In most cases measurements of response were found to agree closely with those
computed by a time-stepping numerical model based on statically measured forces.
However, hydrodynamic factors (feedback from the motion to the loading) were
clearly important in the largest waves and lowest frequency ratios, producing at most
a 20% reduction in peak displacements. Peak accelerations (much more sensitive to the
frequency ratio) were scattered between about 90% and 125% of the quasi-static
predictions.

Tank wall effects were surprisingly unimportant. Force records obtained at blockage
ratios (cylinder diameter to tank width) of 0±13 and 0±25 were found to be almost
indistinguishable, except for an enhancement of the peak loading in the steepest waves
by about 8%. In waves of about 72% of limiting height, the difference was less than
2±5%.

Particular attention was given to a secondary loading cycle (previously described by
Grue et al. 1993) that occurs after the crest has passed the cylinder’s axis. The
amplitude of this oscillation was found to be a function predominantly of the wave
steepness, and simple numerical experiments showed that it may have an important
effect on ringing response.

This work was supported by the EPSRC, through grant number GR}J53317.
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F 21. Phase angles close to the focus point. The wave conditions were close to
those of case 775.

Appendix. Generating focused waves

Generating large individual waves in water of uniform depth by frequency focusing
can be achieved by at least three different approaches. Those that are referred to most
often in the literature are : first, arranging for mutual reinforcement at a particular
point in the tank between many component wave trains of different frequencies
(Greenhow et al. 1982) ; secondly, using a waveboard control signal derived from the
computed dispersion of waves following the release of a given volume of water placed
on an initially still water surface (Mansard & Funke 1982) ; and third, generating waves
of continuously changing frequency into still water in such a way that the energy at all
frequencies arrives simultaneously at the focal point (Longuet-Higgins 1974).

The generation of the waveboard control signal in each case may be worked out with
linear theory, and for many purposes this provides an adequate approximation. But it
is found that because of nonlinearities the wave components do not come to a true
focus, and that changes in the amplitude of the waveboard’s motion produce
unpredictable changes in the waves. It was desirable to conduct the present experiments
in large waves of various amplitudes, and for this purpose we used the first approach
described above, but rather than relying on linear theory we developed an empirical
technique for ensuring accurate phase convergence of all the component waves at the
target focal point in each case.

The frequencies of the mechanically generated waves corresponded to those 34 sub-
multiples of an overall repeat period of 45 s that were within the range 0±8 to 2 s. They
were therefore equally spaced between 0±511 and 1±244 Hz, covering most of the
useable bandwidth of the waveboard. In each case, their amplitudes were set
approximately mid-way between the conditions of uniform amplitude and of uniform
steepness. An initial estimate of the waveboard control signal was generated after
computing the required phase of each component from linear theory.

In the absence of the cylinder, but with a wave gauge at its mounting position (the
focal point), the control signal was played out repeatedly to the waveboard while the
output of the wave gauge was digitized at a rate corresponding to 8192 samples in the
overall repeat period, i.e. at a frequency of 182±04 Hz. The phase of each mechanically
generated wave component at the wave gauge was then computed by fast Fourier
transform (FFT). For the next iteration, an exactly opposite phase shift was applied to
the corresponding component of the waveboard’s control signal, and the whole process
was repeated until convergence. This operation was carried out for each of the seven
cases listed in table 1, and was found to be very stable. It was rarely necessary to
complete more than three iterations before all mechanically generated wave
components were in phase at the focal point to well within one degree, producing a
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focused wave there exactly at the end of each repeat period. The same technique has
been used to generate breaking and non-breaking focused waves, in several different
wave flumes, both in the absence of structures (over a wide range of focal distances),
and against a vertical wall.

Phases of the wave components measured around the focal point in the present
experiments, in conditions close to those of case 775 of table 1, are shown in figure 21,
where x is measured from the focal point in the direction of wave advance. Over the
frequency range corresponding to the mechanically generated waves, the wave
components at x¯ 0 m are very nearly at a common phase of zero (corresponding to
a maximum horizontal velocity), as intended. The naturally generated waves at higher
frequencies are also close to zero phase at this point, though they have undergone a
phase shift between x¯®0±86 and 0 m. Those at lower frequencies below the range of
mechanically generated waves are predominantly at a phase of 180° at x¯ 0 m, in
accordance with the expected behaviour of the long wave that travels with the group.

Phase speeds of the same waves were computed as a function of frequency from the
FFT of water surface elevation records obtained at adjacent pairs of wave gauges, and
are shown in figure 22 at two locations ahead of the focal point. At x¯®0±75 m, low-
frequency waves appear at about one-half of the linear phase speed, while at
frequencies greater than those of the mechanically generated waves, phase speeds are
close to two and three times the linear result, in agreement with the case of the single
modulated wavetrain discussed by Crawford et al. (1981).

But at x ¯®0±25 m the high-frequency waves have an almost uniform phase speed,
close to that corresponding to the middle of the range of mechanically generated
waves. This behaviour (similar to that in cases with continuous spectra studied by
Crawford et al.) continued for about 1±25 m beyond the focal point (a total distance
of more than 2π}k – from table 1), beyond which the pattern shown in figure 2(a) was
re-established.

These measurements showed that at the focal point (where the ringing experiments
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were carried out), wave components over a wide range of frequencies were at a
common phase, and that the wave group as a whole propagated with a coherence much
greater than that which would be expected from a linear model. Further details of these
experiments are described by Chaplin (1996).
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